In Fig. 15.86, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. AE intersects BC in F. Prove that

(i) ar(Δ BDE) =
ar(Δ ABC)
(ii) ar(Δ BDE) =
ar(Δ BAE)
(iii) ar(Δ BFE) = ar(Δ AFD)
(iv) ar(Δ ABC) = ar(Δ BEC)
(v) ar(Δ FED) =
ar(Δ AFC)
(vi) ar(Δ BFE) = 2ar(Δ EFD)