#Stay_Ahead of your Class
Listen NCERT Audio Books to boost your productivity and retention power by 2X.
Prove each of the following identities:
(1 – cos2 θ)cosec2 θ = 1
(1 + cot2 θ) sin2θ = 1
(sec2 θ – 1) cot2 θ = 1
(sec2 θ – 1)(cosec2 θ – 1) = 1
(1 – cos2 θ) sec2 θ = tan2 θ
(1 + cos θ )(1 – cos θ)(1 + cot2 θ) = 1
(cosec θ)(1 + cos θ)(cosec θ – cot θ) = 1
sec θ(1 – sin θ)(sec θ + tan θ) = 1
sin θ (1 + tan θ) + cos θ (1+ cot θ) = (sec θ + cosec θ)
sin6 θ + cos6 θ = 1 – 3 sin2 θ cos2 θ
sin2 θ + cos4θ = cos2 θ + sin4 θ
cosec4 θ – cosec2 θ = cot4 θ + cot2 θ
Show that none of the following is an identity:
cos2 θ + cos θ = 1
sin2 θ + sin θ = 2
tan2 θ + sin θ = cos2 θ
Prove that: (sin θ – 2 sin3 θ) = (2cos3 θ – cos θ) tan θ.
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that (m2+ n2) = (a2 + b2).
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that
(x2 – y2) = (a2 – b2)
If prove that
If (sec θ + tan θ) = m and (sec θ – tan θ) = n, show that mn = 1.
If (cosec θ + cot θ) = m and (cosec θ – cot θ) = n, show that mn = 1
If x = a cos3 θ and y = b sin3 θ, prove that
If (tan θ + sin θ) = m and (tan θ – sin θ) = n, prove that (m2 – n2)2 = 16mn.
If (cot θ + tan θ) = m and (sec θ – cos θ) = n, prove that (m2n) 2/3 – (mn2) 2/3 = 1.
If (cosec θ – sin θ) = a3 and (sec θ – cos θ) = b3, prove that a2 b2 (a2 + b2) = 1.
If (2 sin θ + 3 cos θ) = 2, prove that (3 sin θ – 2 cos θ) = ± 3.
If (sin θ + cos θ) = √2 cos θ, show that cot θ = (√2 + 1).
If (cos θ + sin θ) = √2sin θ, prove that (sin θ – cos θ) = √2cos θ.
If sec θ + tan θ = p, prove that
(i)
(ii)
(iii)
If tan A = n tan B and sin A = m sin B, prove that .
If m = (cos θ – sin θ) and n = (cos θ + sin θ) then show that
Write the value of (1 – sin2θ) sec2 θ.
Write the value of (1 – cos2θ) cosec2 θ.
Write the value of (1 + tan2θ) cos2 θ.
Write the value of (1 + cot2θ) sin2 θ.
Write the value of .
Write the value of sin θ cos (90° – θ) + cos θ sin (90° – θ).
Write the value of cosec2 (90° – θ) – tan2 θ.
Write the value of sec2 θ (1 + sin θ)(1 – sin θ).
Write the value of cosec2 θ (1 + cos θ)(1 – cos θ).
Write the value of sin2 θ cos2 θ (1 + tan2 θ)(1 + cot2 θ).
Write the value of (1 + tan2 θ)(1 + sin θ)(1 – sin θ).
Write the value of 3 cot2 θ – 3 cosec2 θ.
Write the value of
If sin θ = 1/2, write the value of (3 cot2 θ + 3).
If cos θ = 2/3, write the value of (4 +4 tan2 θ).
If cos θ = 7/25, write the value of (tan θ + cot θ).
If cos θ = 2/3, write the value of .
If 5 tan θ = 4, write the value of .
If 3 cot θ = 4, write the value of .
If cot θ = 1/√3 write the value of
If tan θ = 1/√5write the value of
If cot A = 4/3 and (A + B) = 90°, what is the value of tan B?
If cos B = 3/5 and (A + B) = 90°, find the value of sin A.
If √3sin θ = cos θ and θ is an acute angle, find the value of θ.
Write the value of tan 10° tan 20° tan 70° tan 80°.
Write the value of tan 1° tan 2° ... tan 89°.
Write the value of cos 1° cos 2° ... cos 180°.
If tan A = 5/12, find the value of (sin A + cos A) sec A.
If sin θ = cos (θ – 45°), where θ is acute, find the value of θ.
Find the value of .
Find the value of sin 48° sec 42° + cos 48° cosec 42°.
If x = a sin θ and y = b cos θ, write the value of (b2x2 + a2y2).
If 5x = sec θ and 5/x = tan θ, find the value of 5
If cosec θ = 2x and cot θ = 2/x find the value of 2.
If sec θ + tan θ = x, find the value of sec θ.
If sin θ = x, write the value of cot θ.
If sec θ = x, write the value of tan θ.
tan 10° tan 15° tan 75° tan 80° = ?
tan 5° tan 25° tan 30° tan 65° tan 85° = ?
cos 1° cos 2° cos 3° ... cos 180° = ?
sin 47° cos 43° + cos 47° sin 43° = ?
sec 70° sin 20° + cos 20° cosec 70° = ?
If sin 3A = cos (A – 10°) and ∠A is acute then ∠A = ?
If sec 4A = cosec (A – 10°) and 4A is acute then ∠A = ?
If A and B are acute angles such that sin A = cos B then (A + B) = ?
If cos (α + β) = 0 then sin (α – β) = ?
sin (45° + θ) – cos (45° – θ) = ?
sec2 10° – cot2 80° = ?
cosec2 57° – tan2 33° = ?
If 2 sin 2θ = √3 then θ = ?
If 2 cos 3θ = 1 then θ = ?
If √3tan 2θ – 3 = 0 then θ = ?
If tan x = 3 cot x then x = ?
If x tan 45° cos 60° = sin 60° cot 60° then x = ?
If tan245° – cos230° = x sin 45° cos 45° then x = ?
sec260° – 1 = ?
(cos 0° + sin 30° + sin 45°) (sin 90° + cos 60° – cos 45°) = ?
sin2 30° + 4 cot2 45° – sec2 60° = ?
3 cos260° + 2 cot230° – 5 sin245° = ?
cos2 30° cos2 45° + 4 sec2 60° + 2cos2 90° – 2 tan2 60° = ?
If cosec θ = √10 then sec θ = ?
If tan θ = 8/15, then cosec θ = ?
If sin θ = a/b, then cos θ = ?
If tan θ = √3, then sec θ = ?
If sec θ = 25/7, then sin θ = ?
If sin θ = 1/2, then cot θ = ?
If cos θ = 4/5 then tan θ = ?
If 3x = cosec θ and 3/x = cot θ, then
If 2x = sec A and 2/x = tan A then
If tan θ = 4/3, then (sin θ + cos θ) = ?
If (tan θ + cot θ) = 5 then (tan2 θ + cot2 θ) = ?
If (cos θ + sec θ) = 5/2, then (cos2 θ + sec2 θ) = ?
If
If tan θ = a/b, then
If sin A + sin2A = 1 then cos2A + cos4A = ?
If cos A + cos2A = 1 then sin2A + sin4A = ?
If tan θ = a/b, then ?
(cosec θ – cot θ)2 = ?
(sec A + tan A)(1 – sin A) = ?
The value of (sin2 30° cos2 45° + 4 tan2 30°+ (1/2) sin2 90o + (1/8)cot2 60o) = ?
If cos A + cos2 A = 1 then (sin2A + sin4A) = ?
If sin θ = √3/2, then (cosec θ + cot θ) = ?
If cot A = 4/5, prove that
If 2x = sec A and 2/x = tan A, prove that .
If √3 tan θ = 3 sin θ, prove that (sin2 θ – cos2 θ) = 1/3.
Prove that .
If 2 sin 2θ = √3, prove that θ = 30°.
If cosec θ + cot θ = p, prove that .
If 5 cot θ = 3, show that the value of is 16/29.
Prove that (sin 32° cos 58° + cos 32° sin 58°) = 1.
If x = a sin θ + b cos θ and y = a cos θ – b sin θ, prove that x2 + y2 = a2 + b2.
Prove that
If sec 5A = cosec (A – 36°) and 5A is an acute angle, show that A = 21°.