#Stay_Ahead of your Class
Listen NCERT Audio Books to boost your productivity and retention power by 2X.
Prove the following identities
sec4x – sec2x = tan4x + tan2x
sin6x + cos6x = 1 – 3 sin2x cos2x
(cosecx – sinx) (secx – cosx) (tanx + cotx) = 1
cosecx (secx – 1) – cotx (1 – cosx) = tanx – sinx
= (secx cosecx + 1)
(secx sec y + tanx tan y)2 – (secx tan y + tanx sec y)2 = 1
= sinx cosx
sin2x cos2x
(1 + tan α tan β)2 + (tan α – tan β)2 = sec2 α sec2 β
= sin2x cos2x
cosx (tanx + 2) (2 tanx + 1) = 2 secx + 5 sinx
If then prove that is also equal to a.
If find the values of tanx, secx and cosecx
If then find the value of
If show that
If cosecx – sinx = a3, secx – cosx = b3, then prove that a2 b2 (a2 + b2) = 1.
If cotx(1 + sinx) = 4m and cotx(1 – sinx) = 4n, prove that (m2 – n2)2 = mn.
If sinx + cosx = m, then prove that sin6x + cos6x = where m2 ≤ 2
If a = secx – tanx and b = cosecx + cotx, then show that ab + a – b + 1 = 0.
Prove that :
where
If Tn = sinnx + cosnx, prove that
2 T6 – 3 T4 + 1 = 0
6 T10 – 15 T8 + 10 T6 – 1 = 0
Find the values of the other five trigonometric functions in each of the following:
cot in quadrant III
cos in quadrant II
tan in quadrant III
sin in quatrant I
If sin and lies in the second quadrant, find the value of secx + tanx.
If sin tan and find the value of 8 tan
If sinx + cosx = 0 andx lies in the fourth quadrant, find sinx and cosx.
If cos and find the values of other five trigonometric functions and hence evaluate
Find the values of the following trigonometric ratios:
sin 17 π
prove that :
tan 225o cot 405o + tan 765o cot 675o = 0
cos 24o + cos 55o + cos 125o + cos 204o + cos 300o =
tan (-225o) cot (-405o) – tan (-765o) cot (675o) = 0
cos 570o sin 510o + sin (-330o) cos (-390o) = 0
In a ∆ABC, prove that :
i. cos (A + B) + cos C = 0
ii.
iii.
If A, B, C, D be the angles of a cyclic quadrilateral taken in order prove that :
cs(180o – A) + cos (180o + B) + cos (180o + C) – sin (90o + D) = 0
Find x from the following equations:
Prove that:
Write the maximum and minimum values of cos (cos x).
Write the maximum and minimum values of sin (sin x).
Write the maximum value of sin (cos x).
If sin x = cos2 x, then write the value of cos2 x (1 + cos2 x).
If sin x = cosec x = 2, then write the value of sinn x + cosecn x.
If sin x + sin2 x = 1, then write the value of cos12 x + 3 cos10 x + 3 cos8 x + cos6 x.
If sin x + sin2 x = 1, then write the value of cos8 x + 2 cos6 x + cos4 x.
If sin θ1 + sin θ2 + sin θ3 = 3, then write the value of cos θ1 + cos θ2 + cos θ3.
Write the value of sin 10° + sin 20° + sin 30° + ... + sin 360°.
A circular wire of radius 15 cm is cut and bent so as to lie along the circumference of a loop of radius 120 cm. Write the measure of the angle subtended by it at the centre of the loop.
Write the value of 2 (sin6 x + cos6 x) − 3 (sin4 x + cos4 x) + 1.
Write the value of cos 1° + cos 2° + cos 3° + ... + cos 180°.
If cot (α + β) = 0, then write the value of sin (α + 2β).
If tan A + cot A = 4, then write the value of tan4 A + cot4 A.
Write the least value of cos2 x + sec2 x.
If x = sin14x + cos20 x, then write the smallest interval in which the value of x lie.
If 3 sin x + 5 cos x = 5, then write the value of 5 sin x − 3 cos x.
Mark the correct alternative in the following:
If , then sec x − tan x is equal to
If , then sec x + tan x =
If , then is equal to
If π < x < 2 π, then is equal to
If , and if , then y is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If , then x is equal to
If and x lies in the IV quadrant, then the value of cos x is
sin6 A + cos6 A + 3 sin2 A cos2 A =
If , then cos x is equal to
If , then tan x =
is true if and only if
If x is an acute angle and , then the value of is
The value of sin2 5° + sin2 10° + sin2 15° + … + sin2 85° + sin2 90° is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If x sin 45° cos2 60°, then x =
If A lies in second quadrant and 3 tan A + 4 = 0, then the value of 2 cot A − 5 cos A + sin A is equal to
If tan θ + sec θ = ex, then cos θ equals
If sec x + tan x = k, cos x =
If , the
Which of the following is incorrect?
The value of cos 1° cos 2° cos 3° ... cos 179° is
The value of tan 1° tan 2° tan 3° ... tan 89° is
Which of the following is correct?