#Stay_Ahead of your Class
Listen NCERT Audio Books to boost your productivity and retention power by 2X.
If sinA = 4/5 And cosB = 5/13, where 0 <A, B < π/2, find the values of the following:
(i) sin(A +B)
(ii) cos(A +B)
(iii) sin(A –B)
(iv) cos(A -B)
If SinA = 12/13 And sinB = 4/5, where π/2<A < π And 0 <B < π/2, find the following:
(i) sin(A +B) (ii) cos(A +B)
If sinA = 3/5, cosB = –12/13, where A And B Both lie in second quadrant, find the value of sin(A +B).
If cosA = – 24/25 And cosB = 3/5, where π <A < 3π/2 And 3π/2 <B < 2π, find the following:
If tanA = 3/4, cosB = 9/41, where π<A < 3π/2 And 0 <B < π/2, find tan(A +B).
If sinA = 1/2, cosB = 12/13, where π/2<A < π And 3π/2 <B < 2π, find tan(A -B).
If SinA = 1/2, cosB = , where π/2<A < π And 0 <B < π/2, find the following:
(i) tan(A +B)(ii) tan(A -B)
Evaluate the following:
(i) sin 780 cos 180 – cos 780 sin 180 (ii) cos 470 cos 130 - sin 470 sin 130
(iii) sin 360 cos 90 + cos 360 sin 90 (iv) cos 800 cos 200 + sin 800 sin 200
If cosA = –12/13 and cotB = 24/7, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
(i) sin(A +B) (ii) cos(A +B) (iii) tan(A +B)
Prove that: cos 7π/12 + cos π/12 = sin 5π/12 – sin π/12
Prove that:
(i) (ii)
(ii)
If tanA = 5/6 And tanB = 1/11, prove thatA +B = π/4.
If tanA = m/m–1 And tanB = 1/2m – 1, then prove that A –B = π/4.
prove that:
cos2 π/4 - sin2
sin2(n + 1)A – sin2nA = sin(2n + 1)A sinA
sin2B = sin2A + sin2(A-B) – 2sinA cosB sin(A-B)
cos2A + cos2B – 2 cosA cosB cos(A +B) = sin2(A +B)
tan 8x – tan6x – tan 2x = tan 8x
tan 6x tan 2x
tan 360 + tan 90 + tan 360 tan 90 = 1
tan13x – tan 9x – tan 4x = tan 13 x
Tan 9x tan 4x
If , show that .
If tanA = tanB, prove that .
If tan(A +B) = And tan(A -B) = y, find the values of tan 2A And tan 2B.
If CosA + SinB = m And SinA + CosB = n, prove that 2 Sin(A +B) = m2 + n2 – 2.
If tanA + tanB =A And CotA + CotB =B, prove that: cot(A +B) = 1/a – 1/b.
If lies in the first quadrant And cos x = 8/17, then prove that
If then prove that .
If sin(α + β) = 1 And sin(α – β) = 1/2, where , then find the values of tan(α + 2β) And tan(2α + β).
If α,β are two different values of x lying between 0 And 2π which satisfy the equation 6 cos x + 8 sin x = 9, find the value of Sin(α+β).
If sin α + sin β =A And cos α + cos β =B, show that
(i)
If sin α sin β - cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
If tan α = x + 1, tanβ = x - 1, show that 2 cot(α - β) = x2.
IfAngle θ is divided into two parts such that the tangents of the one part is λ times the tangent of other, And ϕ is their difference, then show that .
If , then show that sin α + cos α = cos x.
If α And β are two solutions of the equation Atanx + Bsecx = c, then find the values of sin(α + β).
Find the maximum and minimum values of each of the following trigonometrical expressions:
(i) 12 sin x- 5 cos x
(ii) 12 cos x + 5 sin x+ 4
(iii)
(iv) sin x – cos x + 1
Reduce each of the following expressions to the Sine And Cosine of A single expression:
Reduce each of the following expressions to the Sine And Cosine ofA single expression:
cos x – sin x
24 cos x + 7 sin x
Show that Sin 1000 – Sin 100 is positive.
Prove that lies between and .
If α + β - γ = π, and sin2 α + sin2 β – sin2 γ = λ sin α sin β cos γ, then write the value of λ.
If then write the value of
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
Write the maximum values of 12 sin x – 9 sin2 x.
If 12 sin x – 9 sin2 x attains its maximum value at x = α, then write the value of sin α.
Write the interval in which the values of lie.
If tan (A + B) = p and tan (A – B) = q, then write the value of tan 2B.
If then write the value of tan x tan y.
If then write the value of ab + bc + ca.
If A + B = C, then write the value of tan A tan B tan C.
If sin α – sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If and then write the value of α + β lying in the interval (0, π/2).
Mark the correct alternative in the following:
The value of is
If A + B + C = π, then sec A (cos B cos C – sin B sin C) is equal to
tan 20o + tan 40o + √3 tan 20o tan 40o is equal to
If and then the value of A + B is
If 3 sin x + 4 cos x = 5, then 4 sin x – 3 cos x =
If in a ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
tan 3A – tan 2A – tan A is equal to
If then is equal to
If and where P and Q both are acute angles. Then, the value of P – Q is
If cot (α + β) = 0, then sin (α + 2 β) is equal to
is equal to
If then
If sin (π cos x) = cos (π sin x), then sin 2x =
If and then the value of θ + ϕ is
The value of cos (36o – A) cos (36o + A) + cos (54o + A) cos (54o – A) is
If tan (π/4 + x) + tan (π/4 – x) = a, then tan2 (π /4 + x) + tan2 (π /4 – x) =
If then the smallest positive value of B is
If A – B = π /4, then (1 + tan A) (1 – tanB) is equal to
The maximum value of is
If and tan A tan B = 2, then
If tan 69o + tan 66o – tan 69o tan 66o = 2k, then k =
If and then α + β is equal to