#Stay_Ahead of your Class
Listen NCERT Audio Books to boost your productivity and retention power by 2X.
If y = tan – 1 x, show that (1 + x2) .
If y = {log (x + √x2 + 1)2, show that (1 + x2) .
If y = (tan – 1 x)2, then prove that (1 – x2)2 y2 + 2x (1 + x2) y1 = 2
If y = cot x show that .
Find , where y = log .
If y = ex(sin x + cos x) prove that .
If y = ex (sin x + cos x) Prove that
If y = cos – 1 x, find in terms of y alone.
If , prove that
If , show that .
If x = 2 cos t – cos 2t, y = 2 sin t – sin 2t, find .
If x = 4z2 + 5, y = 6z2 + 7z + 3, find .
If y = log (1 + cos x), prove that
If y = sin (log x), prove that
If , prove that .
If, prove that .
If , then show that
If , then find the value of .
If x = a sin t and , find .
If x = a (cos t + t sin t) and y = a (sin t – t cos t), then find the value of at
If , y = a sin t, evaluate at
If x = a (cos 2t + 2t sin 2t) and y = a (sin 2t – 2t cos 2t), then find .
If x = 3 cot t – 2 cos3 t, y = 3 sin t – 2 sin3 t, find .
If x = a sin t – b cos t, y = a cos t + b sin t, prove that .
Find A and B so that y = A sin 3x + Bcos 3x satisfies the equation
If y = A e – kt cos (pt + c), prove that , where n2 = p2 + k2.
If y = a {x + √x2 + 1}n + b{x – √x2 + 1} – n, prove that (x2 – 1) .
Find the second order derivatives of each of the following functions:
x3 + tan x
sin (log x)
log (sin x)
ex sin 5x
e6x cos 3x
x3 log x
tan-1 x
x cos x
log (log x)
If y=e–x cos x, show that : sin x.
If y = x + tan x, show that: cos2
If y = x3 log x, prove that .
If y = log (sin x), prove that: cos x cose3 x.
If y = 2 sin x + 3 cos x, show that:
If y = , show that .
If x = a sec θ, y = b tan θ, prove that .
If x =a (cos θ + θ sin θ), y=a (sin θ – θ cos θ) prove that
(sin θ + θ cosθ) and .
If y = ex cosx, prove that
If x = a cos θ , y = b sin θ, show that .
If x = a (1 – cos 3θ), y = a sin 3 θ, Prove that .
If x = a (θ + sin θ), y = a (1+ cos θ), prove that .
If x = a (θ – sin θ), y = a (1 + cos θ) find .
If x = a (1 – cos θ), y =a (θ + sin θ), prove that
If x = a (1 + cos θ), y = a (θ+ sinθ) Prove that .
If x = cos θ, y = sin3θ. Prove that
If y = sin (sin x), prove that :
If y = (sin–1 x)2, prove that: (1–x2) y2 – xy1– 2=0
If y = (sin–1 x)2, prove that: (1–x2) y2–xy1–2=0
If y =etan–1x, Prove that: (1+x2)y2+(2x–1)y1=0
If y = 3 cos (log x) + 4 sin (log x), prove that: x2y2+xy1+ y =0.
If y=e2x(ax + b), show that y2–4y1+4y = 0.
If x = sin, show that (1–x2)y2–xy1–a2 y = 0
If log y = tan–1 X, show that : (1+x2)y2+(2x–1) y1=0.
Write the correct alternative in the following:
If x = a cos nt – b sin nt, then is
If x = at2, y = 2at, then
If y = axn+1 + b x–n, then
If x = t2, y = t3, then
If y = a + bx2, a, b arbitrary constants, then
If f(x) = (cos x + i sinx) (cos 2x + i sin 2x) (cos 3x + i sin 3x) …. (cos nx + i sin nx) and f(1) = 1, then f’’ (1) is equal to
If y = a sin mx + b cos mx, then is equal to
If then (1 – x2) f’ (x)– xf(x) =
If then
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If x = 2at, y = at2, where a is a constant, then
If x = f(t) and y = g(t), then is equal to
If y = sin (m sin–1 x), then (1 – x2) y2 – xy1 is equal to
If y = (sin–1 x)2, then (1 – x2) y2 is equal to
If y = etan x, then (cos2 x)y2 =
If a > b > 0, then
If then (2xy1 + y)y3 =
If then x3 y2 =
If x = f(t) cos t – f’(t) sin t and y = f(t) sin t + f’(t) cos t, then
If y1/n + y–1/n = 2x, then (x2 – 1)y2 + xy1 =
If
Then the value of ar, 0 < r ≤ n, is equal to
If y = xn–1 log x, then x2 y2 + (3 – 2n) xy1 is equal to
If xy – loge y = 1 satisfies the equation x(yy2 + y12) – y2 + λyy1 = 0, then λ =
If y2 = ax2 + bx + c, then y3is
If y = a xn+1 + bx–n and then write the value of λ.
If x = a cos nt – b sin nt and then find the value of λ.
If x = t2 and y = t3, where a is a constant, then find
If x = 2at, y = at2, where a is a constant, then find
If x = f(t) and y = g(t), then write the value of
If y = 1 – x + then write in terms of y.
If y = x + ex, find
If y = |x – x2|, then find
If y = |loge x|, find