Simplify:
(i) 2x2 (x3 – x) – 3x (x4 + 2x) – 2 (x4 – 3x2)
= 2x5 – 2x3 – 3x5 – 6x2 – 2x4 + 6x2
= -x5 – 2x4 – 2x3
(ii) x3y (x2 – 2x) + 2xy (x3 – x4)
= x5y – 2x4y + 2x4y – 2x5y
= -x5y
(iii) 3a2 + (a + 2) – 3a (2a + 1)
= 3a2 + a + 2 – 6a2 – 34
= -3a2 – 2a + 2
(iv) x (x + 4) + 3x (2x2 – 1) + 4x2 + 4
= x2 + 4x + 6x3 – 3x + 4x2 + 4
= 6x3 + 5x2 + x + 4
(v) a (b – c) – b (c – a) – c (a – b)
= ab – ac – bc + ab – ca + bc
= 2ab – 2ac
(vi) a (b – c) + b (c – a) + c (a – b)
= ab – ac + bc – ab + ac – bc
= 0
(vii) 4ab (a – b) – 6a2 (b – b2) – 3b2 (2a2 – a) + 2ab (b – a)
= 4a2b – 4ab2 – 6a2b + 6a2b2 – 6a2b2 + 3ab2 + 2ab2 – 2a2b
= 3ab2
(viii) x2 (x2 + 1) – x3 (x + 1) – x (x3 – x)
= x4 + x2 – x4 – x3 – x4 + x2
= 2x2 – 2x3
(ix) 2a2 + 3a (1 – 2a3) + a (a + 1)
= 2a2 + 3a – 6a4 + a2 + a
= -6a4 + 3a2 + 4a
(x) a2 (2a – 1) + 3a + a3 – 8
= 2a3 – a2 + 3a + a3 – 8
= 3a3 – a2 + 3a – 8
(xi) x2 (x2 – 1) +
x2 (x2 + x) -
x (x3 – 1)
= x4 -
x2 +
x4 +
x3 –
x4 +
x
= x4 - x2 +
x3 +
x
(xii) a2b (a – b2) + ab2 (4ab – 2a2) – a3b (1 – 2b)
= a3b – a2b3 + 4a2b3 – 2a3b2 – a3b + 2a3b2
= -a2b3 + 4a2b3
= 3a2b3
(xiii) a2b (a3 – a + 1) – ab (a4 – 2a2 + 2a) – b (a3 – a2 – 1)
= a5b – a3b + a2b – a5b + 2a3b – 2a2b – ba3 + a2b + b
= b