Find the following products:
(i) (ii)
(iii) (iv)
(v) (vi)
(vii) (viii)
(ix) (x)
(xi) (xii)
(xiii) (xiv)
(xv) (xvi) (y2 +
) (y2 -
)
(xvii)
(i)
x (x + 7) + 4 (x + 7)
= x2 + 7x + 4x + 28
= x2 + 11x + 28
(ii)
x (x + 4) – 11 (x + 4)
= x2 + 4x – 11x – 44
= x2 – 7x - 44
(iii)
x (x – 5) + 7 (x – 5)
= x2 – 5x + 7x – 35
= x2 + 2x - 35
(iv)
x (x – 2) – 3 (x – 2)
= x2 – 2x – 3x + 6
= x2 – 5x + 6
(v)
y2 (y2 – 3) – 4 (y2 – 3)
= y4 – 3y2 – 4y2 + 12
= y4 – 7y2 + 12
(vi)
x (x + ) +
(x +
)
= x2 + +
+
= x2 + +
+ 1
= x2 + + 1
(vii)
3x (3x + 11) + 5 (3x + 11)
= 9x2 + 33x + 15x + 55
= 9x2 + 48x + 55
(viii)
2x2 (2x2 – 5) – 3 (2x2 – 5)
= 4x4 – 10x2 – 6x2 + 15
= 4x4 – 16x2 + 15
(ix)
z2 (z2 – 3) + 2 (z2 – 3)
= z4 – 3z2 + 2z2 – 6
= z4 – z2 - 6
(x)
3x (2x – 4y) – 4y (2x – 4y)
= 6x2 – 12xy – 8xy + 16y2
= 6x2 – 20xy + 16y2
(xi)
3x2 (3x2 – 3xy) – 4xy (3x2 – 3xy)
= 9x4 – 9x3y – 12x3y + 12x2y2
= 9x4 – 21x3y + 12x2y2
(xii)
x (x + ) + 5 (x +
)
= x2 + + 5x + 1
= x2 + x + 1
(xiii)
z (z + ) +
(z +
)
= z2 + z +
z +
= z2 + z +
z + 1
= z2 + z + 1
(xiv)
x2 (x2 + 9) + 4 (x2 + 9)
= x4 + 9x2 + 4x2 + 36
= x4 + 13x2 + 36
(xv)
y2 (y2 + 6) + 12 (y2 + 6)
= y4 + 6y2 + 12y2 + 72
= y4 + 18y2 + 72
(xvi) (y2 + ) (y2 -
)
y2 (y2 - ) +
(y2 -
)
= y4 - y2 +
y2 – 2
= y4 - y2 - 2
(xvii)
p2 (p2 - ) + 16 (p2 -
)
= p4 – p2 + 16p2 – 4
= p4 - p2 - 4