If f(x) = x2 – 3x + 4 and f(x) = f(2x + 1), find the values of x.
Given: f(x) = x2 – 3x + 4 ----- (1)
and f(x) = f(2x + 1)
Need to Find: Value of x
Replacing x by (2x + 1) in equation (1) we get,
f(2x + 1) = (2x + 1)2 – 3(2x + 1) + 4 ----- (2)
According to the given problem, f(x) = f(2x + 1)
Comparing (1) and (2) we get,
x2 – 3x + 4 = (2x + 1)2 – 3(2x + 1) + 4
⇒ x2 – 3x + 4 = 4x2 + 4x + 1 – 6x – 3 + 4
⇒ 4x2 + 4x + 1 – 6x – 3 + 4 – x2 + 3x – 4 = 0
⇒ 3x2 + x – 2 = 0
⇒ 3x2 + 3x – 2x – 2 = 0
⇒ 3x(x + 1) – 2(x + 1) = 0
⇒ (3x – 2)(x + 1) = 0
So, either (3x – 2) = 0 or (x + 1) = 0
Therefore, the value of x is either or -1 [Answer]