Let f : R → R : f(x) = x + 1 and g : R → R : g(x) = 2x – 3.Find
(i) (f + g) (x)
(ii) (f – g) (x)
(iii) (fg) (x)
(iv)(f/g) (x)
(i) Given:
f(x) = x + 1 and g(x) = 2x -3
(i) To find: (f + g) (x)
(f + g) (x) = f(x) + g(x)
= (x + 1) + (2x -3)
= x + 1 + 2x – 3
= 3x – 2
Therefore,
(f + g) (x) = 3x -2
(ii) To find: (f - g) (x)
(f - g) (x) = f(x) - g(x)
= (x + 1) - (2x -3)
= x + 1 - 2x + 3
= 4 - x
Therefore,
(f - g) (x) = 4 - x
(iii) To find: (fg)(x)
(fg)(x) = f(x). g(x)
= (x+1) (2x-3)
= x(2x) -3(x) +1(2x) -1(3)
= 2x2 – 3x + 2x -3
= 2x2 – x -3
Therefore,
(fg)(x) = 2x2 – x -3
(iv) To find
Sol.
Therefore,