Evaluate :
To find: Value of
Formula used: (I)
(ii) (a+b)n = nC0an + nC1an-1b + nC2an-2b2 + …… +nCn-1abn-1 + nCnbn
(a+1)5 = 5C0a5 + 5C1a5-11 + 5C2a5-212 + 5C3a5-313 + 5C4a5-414 + 5C515
⇒ 5C0a5 + 5C1a4 + 5C2a3 + 5C3a2 + 5C4a + 5C5… (i)
(a-1)5
⇒ 5C0a5 - 5C1a4 + 5C2a3 - 5C3a2 + 5C4a - 5C5 … (ii)
Substracting (ii) from (i)
(a+1)5 - (a-1)5 = [5C0a5 + 5C1a4 + 5C2a3 + 5C3a2 + 5C4a + 5C5] - [5C0a5 - 5C1a4 + 5C2a3 - 5C3a2 + 5C4a - 5C5]
⇒ 2[5C1a4 + 5C3a2 + 5C5]
⇒ 2
⇒ 2[(5)a4 + (10)a2 + (1)]
⇒ 2[5a4 + 10a2 + 1] = (a+1)5 - (a-1)5
Putting the value of a = in the above equation
= 2[5
4 + 10
2 + 1]
⇒ 2[(5)(9) + (10)(3) + 1]
⇒ 2[45+30+1]
⇒ 152
Ans) 152