Prove that
To prove:
Formula used: (i)
(ii) (a+b)n = nC0an + nC1an-1b + nC2an-2b2 + …… +nCn-1abn-1 + nCnbn
(a+b)4 = 4C0a4 + 4C1a4-1b + 4C2a4-2b2 + 4C3a4-3b3 + 4C4b4
⇒ 4C0a4 + 4C1a3b + 4C2a2b2 + 4C3a1b3 + 4C4b4 … (i)
(a-b)4 = 4C0a4 + 4C1a4-1(-b) + 4C2a4-2(-b)2 +4C3a4-3(-b)3+4C4(-b)4
⇒ 4C0a4 - 4C1a3b + 4C2a2b2 - 4C3ab3 + 4C4b4 … (ii)
Adding (i) and (ii)
(a+b)4 + (a-b)7 = [4C0a4 + 4C1a3b + 4C2a2b2 + 4C3a1b3 + 4C4b4] + [4C0a4 - 4C1a3b + 4C2a2b2 - 4C3ab3 + 4C4b4]
⇒ 2[4C0a4 + 4C2a2b2 + 4C4b4]
⇒ 2
⇒ 2[(1)a4 + (6)a2b2 + (1)b4]
⇒ 2[a4 + 6a2b2 + b4]
Therefore, (a+b)4 + (a-b)7 = 2[a4 + 6a2b2 + b4]
Now, putting a = 2 and b = in the above equation.
= 2[(2)4 + 6(2)2 (
)2 + (
)4]
= 2(16+24x+x2)
Hence proved.