Find the general solution of each of the following equations:
(i)
(ii) cos x = 1
(iii)
To Find: General solution.
(i) Given: sin x =
Formula used: sin = sin
= n
+ (-1)n
, n
I
By using above formula, we have
sin x = = sin
x = n
+ (-1)n .
So general solution is x = n + (-1)n .
where n
I
(ii) Given: cos x = 1
Formula used: cos = cos
= 2n
, n
I
By using above formula, we have
cos x = 1= cos(0)
x = 2n
, n
I
So general solution is x = 2n where n
I
(iii) Given: sec x =
We know that sec cos
= 1
So cosx =
Formula used: cos = cos
= 2n
, n
I
By using above formula, we have
cosx = = cos
x = 2n
, n
I
So general solution is x = 2n where n
I