Find the general solution of each of the following equations:
4sin x cos x + 2sin x + 2cos x + 1 = 0
To Find: General solution.
Given: 4sin x cos x + 2sin x + 2cos x + 1 = 0 2sin x(2cos x + 1) + 2cos x + 1 = 0
So (2cos x + 1)( 2sin x + 1) = 0
cos x = = cos(
) or sin x =
= sin
Formula used: cos = cos
= 2n
or sin
= sin
= m
+ (-1)m
where n,m
I
x = 2n or x = m
+
(-1)m .
where n, m
I
So the general solution is x =2n or x = m
+
(-1)m .
where n, m
I