If
find the value of a and b such that A2 + aA + bI = O.
Given :
A2 + aA + bI = O
A is a matrix of order 2 x 2
To find : a and b
Formula used :

Where cij = ai1b1j + ai2b2j + ai3b3j + ……………… + ainbnj
If A is a matrix of order a
b and B is a matrix of order c
d ,then matrix AB exists and is of order a
d ,if and only if b = c
A2 is a matrix of order 2 x 2
A2 =
=
= ![]()
A2 = ![]()
aA = a
= ![]()
bI = b
= ![]()
bI = ![]()
A2 + aA + bI =
+
+
= ![]()
A2 + aA + bI = ![]()
It is given that A2 + aA + bI = 0
= ![]()
Equating similar terms in the matrices,we get
4 + a = 0 and 3 + a + b = 0
a = 0 – 4 = -4
a = -4
substituting a = -4 in 3 + a + b = 0
3 – 4 + b = 0
-1 + b = 0
b = 0 + 1 = 1
b = 1
a = -4 and b = 1