Listen NCERT Audio Books to boost your productivity and retention power by 2X.
Choose the correct answer
The value of is
We need to find the value of
Let,
Let us find sin a and cos b.
For sin a,
We know the trigonometric identity, sin2 a + cos2 a = 1
⇒ sin2 a = 1 – cos2 a
⇒ sin a = √(1 – cos2 a)
Substituting the value of cos a,
We have .
So, we can find tan a.
⇒ tan a = 7 …(i)
For cos b,
We know the trigonometric identity,
sin2 b + cos2 b = 1
⇒ cos2 b = 1 – sin2 b
⇒ cos b = √(1 – sin2 b)
Substituting the value of sin b,
We have .
So, we can find tan b.
⇒ tan b = 4 …(ii)
We can write as,
Now, we need to solve Right Hand Side (RHS).
We know the trigonometric identity,
Substituting the values of tan a and tan b from (i) and (ii),
So,