Choose the correct answer
The value of
is
We need to find the value of

Let ![]()
Now, take sine on both sides,

Using the property of inverse trigonometry,
sin(sin-1 A) = A
![]()
Let us find the value of cos x.
We know by trigonometric identity, that
sin2 x + cos2 x = 1
⇒ cos2 x = 1 – sin2 x
![]()
Put the value of sin x,




![]()
We have,

…(i)
Using the trigonometric identity,
cos 2x = cos2 x – sin2 x
⇒ cos 2x = (1 – sin2x) – sin2 x [∵, sin2 x + cos2 x = 1]
⇒ cos 2x = 1 – sin2 x – sin2 x
⇒ cos 2x = 1 – 2 sin2 x
Or,
2 sin2 x = 1 – cos 2x
![]()

Replacing x by x/4,


Substituting the value of
in equation (i),
…(ii)
Using the trigonometric identity,
cos 2x = cos2 x – sin2 x
⇒ cos 2x = cos2 x – (1 – cos2 x) [∵, sin2 x + cos2 x = 1]
⇒ cos 2x = cos2 x – 1 + cos2x
⇒ cos 2x = 2 cos2 x – 1
Or,
2 cos2 x = 1 + cos 2x
![]()

Replacing x by x/2,


Substituting the value of
in equation (ii),

Put the value of cos x as found above, cos x = 1/8.








![]()