Listen NCERT Audio Books to boost your productivity and retention power by 2X.
Choose the correct answer
The value of is
We need to find the value of
Let
Now, take sine on both sides,
Using the property of inverse trigonometry,
sin(sin-1 A) = A
Let us find the value of cos x.
We know by trigonometric identity, that
sin2 x + cos2 x = 1
⇒ cos2 x = 1 – sin2 x
Put the value of sin x,
We have,
…(i)
Using the trigonometric identity,
cos 2x = cos2 x – sin2 x
⇒ cos 2x = (1 – sin2x) – sin2 x [∵, sin2 x + cos2 x = 1]
⇒ cos 2x = 1 – sin2 x – sin2 x
⇒ cos 2x = 1 – 2 sin2 x
Or,
2 sin2 x = 1 – cos 2x
Replacing x by x/4,
Substituting the value of in equation (i),
…(ii)
Using the trigonometric identity,
cos 2x = cos2 x – sin2 x
⇒ cos 2x = cos2 x – (1 – cos2 x) [∵, sin2 x + cos2 x = 1]
⇒ cos 2x = cos2 x – 1 + cos2x
⇒ cos 2x = 2 cos2 x – 1
Or,
2 cos2 x = 1 + cos 2x
Replacing x by x/2,
Substituting the value of in equation (ii),
Put the value of cos x as found above, cos x = 1/8.