If , then for any natural number, find the value of Det(An).
We are given that,
We need to find the det(An).
To find det(An),
First we need to find An, and then take determinant of An.
Let us find A2.
A2 = A.A
Let,
For z11: Dot multiply the first row of the first matrix and first column of the second matrix, then sum up.
That is,
(cos θ, sin θ).(cos θ, -sin θ) = cos θ × cos θ + sin θ × (-sin θ)
⇒ (cos θ, sin θ).(cos θ, -sin θ) = cos2 θ – sin2 θ
By algebraic identity,
cos 2θ = cos2 θ – sin2 θ
⇒ (cos θ, sin θ).(cos θ, -sin θ) = cos 2θ
For z12: Dot multiply the first row of the first matrix and second column of the second matrix, then sum up.
That is,
(cos θ, sin θ)(sin θ, cos θ) = cos θ × sin θ + sin θ × cos θ
⇒ (cos θ, sin θ)(sin θ, cos θ) = sin θ cos θ + sin θ cos θ
⇒ (cos θ, sin θ)(sin θ, cos θ) = 2 sin θ cos θ
By algebraic identity,
sin 2θ = 2 sin θ cos θ
⇒ (cos θ, sin θ)(sin θ, cos θ) = sin 2θ
Similarly,
If and
, then
Now, taking determinant of An,
Determinant of 2 × 2 matrix is found as,
So,
Det(An) = cos nθ × cos nθ – sin nθ × (-sin nθ)
⇒ Det(An) = cos2 nθ + sin2 nθ
Using the algebraic identity,
sin2 A + cos2 A = 1
⇒ Det(An) = 1
Thus, Det(An) is 1.