Mark the correct alternative in the following:
If the determinant , then
expend the determinats
a[-(2bα+3c)2 ]-b[-(2bα+3c)(2aα+3b)]+ (2aα+3b)[b(2bα+3c)-c(2aα+3b)]=0
-a(2bα+3c)2 + b(2bα+3c)(2aα+3b)+(2aα+3b)[2b^2 α+3bc-3bc-2acα]=0
(2bα+3c) [-2abα-3ac+2abα+3b2 ]+ (2aα+3b)(2α)( b2 -ac)=0
(2bα+3c) [-3ac +3b2 ]+ (2aα+3b)(2α)( b2-ac)=0
(b2 – ac)[4aα2 + 12bα + ac] = 0=
CASE1→(b2 -ac)=0
b2 =ac {abc are in Gp}
CASE2→(4aα2 +12bα+ac)=0 {Whose one root is }