Find the set of values of a’a’ for which f(x) = x + cosx + ax + b is increasing on R.

f(x) = x + Cos x + ax + b


f’(x) = 1 – Sin x + a + 0


f’(x) = 1 – Sin x + a


For, f(x) to be increasing, it must have


f’(x) > 0


1 – Sin x + a > 0


1 > Sin x - a


Sin x < a + 1


the maximum value of Sin x is 1.


Also, 1 < a + 1


a > 0


a ϵ (0, ∞)


Hence the required set of values is a ϵ (0, ∞).


1