Mark the correct alternative in the following:

Function f(x) = x^{3}– 27x +5 is monotonically increasing when

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f’(x)>0 for all x(a,b)

Given:-

f(x)= x^{3}– 27x +5

=3x^{2}– 27=f’(x)

for increasing function f’(x)>0

3x^{2}– 27>0

(x+3)(x-3)>0

|x|>3

1