We can write above integral as:
----(Splitting tan5x)
(Using tan2x = sec2x – 1)
----(Splitting tan3x)
(Using tan2x = sec2x – 1)
Considering integral (1)
Let u = tanx
du = sec2x dx
Substituting values we get,
Substituting value of u we get,
Considering integral (2)
Let t = tanx
dt = sec2x dx
Substituting values we get,
Substituting value of t we get,
Considering integral (3)
[∵ ∫ tanx dx = -log|cosx| + C]
∴ integral becomes,
[∵ C+C+C is a constant]