Prove that
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
L.H.S
cot 4x (sin 5x + sin3x)
= cot 4x (2)
= cot 4x (2 sin4x cosx)
= (2 sin4x cosx)
= 2cos4xcosx
R.H.S
cot x (sin 5x - sin3x)
= cot x (2)
= cot x (2 cos4x sinx)
= (2 cos4x sinx)
= 2cos4xcosx
L.H.S=R.H.S
Hence, proved.
Using the formula,
sinA + sinB = 2sin cos
sinA - sinB = 2cos sin