Prove that
(sin x – cos x)2 = 1 – sin 2x
To Prove: (sin x – cos x)2 = 1 – sin 2x
Taking LHS,
= (sin x – cos x)2
Using,
(a – b)2 = (a2 + b2 – 2ab)
= sin2x + cos2x – 2sinx cosx
= (sin2x + cos2x) – 2sinx cosx
= 1 – 2sinx cosx [∵ cos2 θ + sin2 θ = 1]
= 1 – sin2x [∵ sin 2x = 2 sinx cosx]
= RHS
∴ LHS = RHS
Hence Proved