In a right-angled triangle ABC, write the value of sin2 A + sin2 B + sin2 C.
Given, triangle ABC is right angle.
So, let ∠ B = 90°
Then as per the property of angles in a triangle
∠ A + ∠ B + ∠ C = 180°
As ∠ B = 90°
∠ A + 90° + ∠ C = 180°
Then ∠ A + ∠ C = 180° - 90° = 90°
Now, consider sin 2A + sin 2B + sin 2C
As ∠ B = 90°
sin2A + sin2B + sin2C = sin2A + sin2(90°) + sin2C
= sin2A + 1 + sin2C
From before, we know that ∠ A + ∠ C = 90° ; ∠ C = 90° - ∠ A
sin2A + sin2B + sin2C = sin2A + 1 + sin2( 90° - A)
= sin2A + cos2(A) + 1
[by using the identity cos x = sin ( 90° - x)]
sin2A + sin2B + sin2C = (sin2A + cos2A) + 1
= 1 + 1
= 2
[by using the identity sin2θ + cos2θ = 1]
Therefore, sin2A + sin2B + sin2C = 2.