If and
terms of a G.P. are m and n respectively, then write its pth term.
⇒ Let the first term be a and the common ratio be r.
∴ According to the question,
ap+q = m.
ap-q = n.
an = arn-1
ap+q = a.rp+q-1
ap-q = a.rp-q-1
∴ a.rp+q-1 = m.
a.rp-q-1 = n.
Multiplying above two equations we get
a2r(p+q-1+(p-q-1) = a2r(2p-2)
a2r(2p-2) = m.n
(ar)2(p-1) = m.n
∴ arp-1 =√m.n
⇒ Pth term is given by a.rp-1
∴ arp-1 =√m.n