If and
terms of a G.P. are x, y, z respectively, then write the value of
.
Let the first term be a and the common ratio be R.
∴ According to the question,
ap = x.
aq = t
ar = z.
We know that an = aRn-1
∴ ap = aRp-1= x
aq = aRq-1= y
ar = aRr-1= z
⇒ xq-r = (aRp-1)q-r
⇒ yr-p = (aRq-1)r-p
⇒ zp-q = (aRr-1)p-q
Multiplying the above three equations we get
xq-r.yr-p.zp-q = (aq-r.Rpq-pr-q+r). (ar-p.Rrq-pq-r+p). (ap-q.Rpr-qr-p+q)
=(aq-r+r-p+p-q.Rpq-pr-q+r+rq-pq-r+p+pr-qr-p+q)
= (a0.R0)
= 1.