In the figure, wh
In ΔABC and ΔA’B’C’
Also, In ΔABC
∠A + ∠B + ∠C = 180°
⇒ ∠A + 30° + 20° = 180°
⇒ ∠A = 130°
So here,
∠A = ∠A’
⇒ ΔABC ∼ ΔA’B’C’ [By SAS Similarity]
⇒ t = 8 units
OR
By Pythagoras theorem,
(Hypotenuse)2 = (Base)2 + (Perpendicular)2
AB2 = AC2 + BC2
[Given: AC = BC, as it is an isosceles triangle]
AB2 = 2AC2
Hence, Proved.