ABC is a triangle. The bisector of the exterior angle at B and the bisector of ∠C intersect each other at D. Prove that ∠D = ∠A.
Exterior ∠B = (180o - ∠B)
Exterior ∠C = (180o - ∠C)
In
∠A + ∠B + ∠C = 180o
(∠A + ∠B + ∠C) = 180o
(∠B + ∠C) = 180o -
∠A (i)
In
∠D + ∠DBC + ∠DCB = 180o
∠D + {180o - (180o - ∠B) - ∠B} + {180o -
(180o - ∠C) - ∠C} = 180o
∠D + 360o – 90o – 90o – (∠B +
∠C) = 180o
∠D + 180o – 90o - ∠A = 180o
∠D = ∠A
Hence, proved