In a Δ ABC, If ∠A = 60°, ∠B =80° and the bisectors of ∠B and ∠C meet at O, then ∠BOC=
In
∠A + ∠B + ∠C = 180o
60o + ∠B + ∠C = 180o
∠B + ∠C = 120o
∠B +
∠C = 60o (i)
∠BOC + ∠OBC + ∠OCB = 180o
∠BOC + ∠B +
∠C = 180o
∠BOC + (∠B + ∠C) = 180o
∠BOC + 60o = 180o [From (i)]
∠BOC = 120o