In Fig. 9.53, if BP||CQ and AC=BC, then the measure of x is
Given,
BP CQ
And,
AC ‖ BC
∠A = ∠ABC (Since, AC = BC)
In
∠A + ∠B + ∠C = 180o
∠A + ∠A + ∠C = 180o
2∠A + ∠C = 180o (i)
∠ACB + ∠ACQ + ∠QCD = 180o (Linear pair)
∠ACB + x = 110o (ii)
∠PBC + ∠BCQ = 180o (Co. interior angle)
20o + ∠A + ∠ACB + x = 180o
∠A = 50o (iii)
Using (iii) in (i), we get
2 * 50o + ∠ACB = 180o
∠ACB = 80o
Using value of ∠ACB in (ii)l we get
80o + x = 110o
x = 30o