If O is a point within ∆ABC, show that:

(i) AB+AC>OB+OC


(ii) AB+BC+CA>OA+OB+OC


(iii) OA+OB+OC>(AB+BC+CA)

Given: O is a point within ∆ABC


To prove:


(i) AB+AC>OB+OC


(ii) AB+BC+CA>OA+OB+OC


(iii) OA+OB+OC>(AB+BC+CA)


Proof:



In ∆ABC,


AB +AC >BC ….(1)


And in ∆OBC,


OB + OC > BC …(2)


Subtracting 1 from 2 we get,


(AB + AC) – (OB + OC ) > (BC – BC )


Ie AB + AC > OB + OC


From ׀, AB + AC > OB + OC


Similarly, AB + BC > OA + OC


And AC + BC > OA + OB


Adding both sides of these three inequalities, we get,


(AB + AC ) + (AB + BC) + (AC + BC) > (OB + OC) + (OA + OC) + (OA + OB)


Ie. 2(AB + BC + AC ) > 2(OA + OB + OC)


AB + BC + OA > OA + OB + OC


In ∆OAB,


OA + OB > AB …(1)


In ∆OBC,


OB + OC > BC …(2)


In ∆OCA


OC + OA > CA …(3)


Adding 1,2 and 3,


(OA + OB) + (OB + OC) + (OC+ OA) >AB + BC +CA


Ie. 2(OA + OB + OC) > AB + BC + CA
OA + OB + OC > ( AB + BC + CA)


44