In the adjoining figure, the points D divides the
Side BC of ∆ABC in the ratio m:n. prove that area(∆ABD): area(∆ABC) = m:n
Given : A ∆ABC in which a point D divides the Side BC in the ratio m:n.
To prove: area(∆ABD): area(∆ABC) = m:n
Construction : Drop a perpendicular AL on BC
Proof:
area(∆ABD) = x BD x AL ---------------- (1)
and, area(∆ADC) = x DC x AL ------------------ (2)
BD:DC = m:n
--------------(3)
sub Eq (3) in eq (1)
area(∆ABD) = x (
x DC) x AL
area(∆ABD) = x (
x DC x AL)
area(∆ABD) = x area(∆ADC)
=
Area(∆ABD): Area(∆ABC) = m:n
Hence proved