In the adjoining figure, is the center of a circle. Chord
is parallel to diameter
If
calculate
Join OC and OD.
∠ABC = ∠BCD = 25°[Alternate angles]
The angle subtended by an arc of a circle at the center is double the angle subtended by the arc at any point on the circumference.
∴ ∠BOD = 2 × ∠BCD
⇒ ∠BOD = 2 × 25°
⇒ ∠BOD = 50°
Similarly,
∠AOC = 2 × ∠ABC
⇒ ∠AOC = 2 × 25°
⇒ ∠AOC = 50°
Now,
∠AOB = 180° [AOB is a straight line]
⇒ ∠AOC + ∠COD + ∠BOD = 180°
⇒ 50° + ∠COD + 50° = 180°
⇒ 100° + ∠COD = 180°
⇒ ∠COD = 80°
∴∠CED = (1/2) ∠COD
⇒ ∠CED = (1/2) 80°
⇒ ∠CED = 40°