Find the area of pentagon ABCDE in which and
such that
cm,
cm,
cm,
cm,
cm and
cm.
Given: A pentagon ABCDE
and
cm
cm
cm
cm
cm
cm
MC = AC – AM = 18 – 14 = 4 cm
MN = AM – AN = 14 – 6 = 8 cm
Here,
Area (Pent. ABCDE) = area (AEN) + area (
DMC) + area (
ABC) + area (Trap. DMNE)
Area of triangle = × (base) × (height).
Area of trapezium is × (sum of parallel sides) × height
Here,
Area (AEN) =
× (AN) × (EN) =
× (6) × (9) = 27 cm2.
Area (DMC) =
× (MC) × (DM) =
× (4) × (12) = 24 cm2.
Area (ABC) =
× (AC) × (BL) =
× (18) × (4) = 36 cm2.
Area (Trap. DMNE) = × (DM + EN) × MN =
× (12 + 9) × 8 = 84 cm2.
Area (Pent. ABCDE) = area (
AEN) + area (
DMC) + area (
ABC) + area (Trap. DMNE)
= 27 + 24 + 36 + 84 = 171 cm2.
Area (Pent. ABCDE) = 171 cm2.