Identify the greater number, wherever possible, in each of the following.

(i) 43 or 34


(ii) 53 or 35


(iii) 28 or 82


(iv) 1002 or 2100


(v) 210 or 102

(i) We have, 43 or 34

On simplifying we get,


43 = 4 × 4 × 4


= 64


And,


34 = 3 × 3 × 3 × 3


= 81


Clearly,


81 > 64


Thus,


34 > 43


(ii) We have, 53 or 35


On simplifying we get,


53 = 5 × 5 × 5


= 125


35 = 3 × 3 × 3 × 3 × 3


= 243


Clearly,


243 > 125


Thus,


35 > 53


(iii) We have, 28 or 82


On simplifying we get,


28 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2


= 256


82 = 8 × 8


= 64


Clearly,


256 > 64


Thus,


28 > 82


(iv) We have, 1002 or 2100


On simplifying we get,


1002 = 100 × 100


= 10000


210 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2


= 1024


Now,


2100 = 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024


Clearly,


2100 > 10000


Thus,


2100 > 1002


(v) W have, 210 or 102


On simplifying we get,


102 = 10 × 10


= 100


210 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2


= 1024


Clearly,


1024 > 100


Thus,


210 > 102


17