Show that the cube of a positive integer of the form 6q + r, q is an integer and r = 0,1,2,3,4,5 is also of the form 6m + r.
By Euclid’s division algorithm, b = a × q + r, 0 ≤ r < a
Here, b is any positive integer .
Let a be an arbitrary positive integer. Then corresponding to the positive integers ‘a’ and 6, there exist non-negative integers q and r such that
a = 6q + r where 0 ≤ r < 6
Cubing both the sides using (a + b)3 = a3 + b3 + 3ab(a + b)
⇒ a3 = (6q + r)3 = 216q3 + r3 + 3 × 6q × r(6q + r)
⇒ a3 = (216q3 + 108q2r + 18qr2) + r3
where 0 ≤ r < 6
Case I When r = 0 we get a3 = 216q3
⇒ a3 = 6(36q3) ⇒ a3 = 6m + 0 where m = 36q3 is an integer
Case II When r = 1 we get
a3 = (216q3 + 108q2 + 18q) + 1
⇒ a3 = 6(36q3 + 18q2 + 3q) + 1
⇒ a3 = 6m + 1, where m = (36q3 + 18q2 + 3q) is an integer.
Case III When r = 2 we get
⇒ a3 = 6(36q3 + 36q2 + 12q + 1) + 2
⇒ a3 = 6m + 2
where m = (36q3 + 36q2 + 12q + 1) is an integer.
Case IV When r = 3 we get
a3 = (216q3 + 324q2 + 162q) + 27
⇒ a3 = (216q3 + 324q2 + 162q + 24) + 3
⇒ a3 = 6(36q3 + 54q2 + 27q + 4) + 3
⇒ a3 = 6m + 3
where m = (36q2 + 54q2 + 27q + 4) is an integer.
Case V When r = 4 we get
a3 = (216q2 + 432q2 + 288q) + 64
⇒ a3 = 6(36q3 + 72q2 + 48q) + 60 + 4
⇒ a3 = 6(36q3 + 72q2 + 48q + 10) + 4
⇒ a3 = 6m + 4
where m = (36q3 + 72q2 + 48q + 10) is an integer.
Case VI When r = 5 we get
a3 = (216q3 + 540q2 + 450q) + 120 + 5
⇒ a3 = 6(36q3 + 90q2 + 75q + 20) + 5
⇒ a3 = 6m + 5
where m = (36q3 + 90q2 + 75q + 20) + 5
Hence, the cube of a positive integer of the form 6q + r, q, is an integer and r = 0,1,2,3,4,5 is also of the forms 6m, 6m + 1, 6m + 2, 6m + 3,6m + 4and 6m + 5i.e., 6m + r.