v2 + 43v - 15.
By splitting the middle term
v2 + 4√3 v - 15 = 0
v2 + (5√3v - 3√3v) - 15 = 0
v2 + 5√3v - 3√3v - 15 = 0
v (v + 5√3) - √3(v + 5√3) = 0
(v + 5√3)(v - √3) = 0
⇒ v = - 5√3, √3
Verification:
Sum of the zeroes = - (coefficient of x) ÷ coefficient of x2
α + β = - b/a
(- 5√3) + (√3) = - 4√3
= - 4√3 = - 4√3
Product of the zeroes = constant term ÷ coefficient of x2
α β = c/a
(- 5√3)(√3) = - 15
- 15 = - 15