If cos(α+β) = 0, then sin(α-β) can be reduced to
Given: cos(α+β) = 0
We can write, cos(α+β)= cos 90° (∵ , cos 90° = 0)
By comparing cosine equation on either sides,
We get(α+β)= 90°
⇒ α = 90°-β
Now we need to reduce sin (α -β )
So, sin(α-β) = sin(90°-β-β) (∵, we have got the value of α, which is α = 90°-β)
= sin(90°-2β)
= cos 2β (∵, sin(90°-θ) = cos θ)
Therefore, sin(α-β) = cos 2β