If cos A+cos2A=1, then sin2A + sin4A=1
True
Given: cos A+cos2 A = 1
(Rearranging, and taking cos2 A on the right side of equation)
⇒ cos A = 1- cos2 A
(∵ sin2 θ+cos2 θ = 1 ⇒ sin2 θ = 1- cos2 θ)
⇒ cos A = sin2 A …eq. 1
Squaring both sides,
we get cos2 A = sin4 A …eq. 2
We have to find sin2A+sin4 A=1
So, adding eq. 1 and eq. 2, we get
sin2A + sin4 A= cos A + cos2 A (As given)
∴ sin2A+ sin4 A = 1