If 1+sin2θ =3sinθ cos θ, then prove that tanθ =1 or .
Given: 1+sin2 θ = 3 sin θ cos θ
Dividing L.H.S and R.H.S equations with sin2 θ,
We get
⇒ cot2 θ +1+1 = 3 cot θ [∵, cosec2 θ – cot2 θ = 1 ⇒ cosec2 θ = cot2 θ +1]
⇒ cot2 θ +2 = 3 cot θ
⇒ cot2 θ –3 cot θ +2 = 0
Splitting the middle term and then solving the equation,
⇒ cot2 θ – cot θ –2 cot θ +2 = 0
⇒ cot θ(cot θ -1)–2(cot θ +1) = 0
⇒ (cot θ - 1)(cot θ - 2) = 0
⇒ cot θ = 1, 2
Hence, proved.