If sin θ +cos θ =p and sec θ +cosec θ =q, then prove that q(p2 - 1)=2p.
Given that sin θ + cos θ = p and sec θ + cosec θ = q
Taking sec θ + cosec θ = q
Squaring sin θ + cos θ = p,
We have (sin θ + cos θ)2 = p2
⇒ sin2 θ + cos2 θ + 2 sin θ cos θ = p2
⇒ 1+2 sin θ cos θ = p2 [∵,sin2 θ + cos2 θ = 1]
⇒ q+2p = p2 q
⇒ q (p2 – 1) = 2p
Hence, proved.