If S is a point on side PQ of a ∆PQR such that PS = QS = RS, then
Given,
In ∆PQR
PS = QS + RS ……(i)
In ∆PSR
PS = RS ….. [from Equation (i)]
⇒ ∠1 = ∠2 Equation ….(ii)
Similarly,
In ∆RSQ,
⇒ ∠3 = ∠4 Equation……(iii)
[Corresponding angles of equal sides are equal]
[By using Equations (ii) and (iii)]
Now in,
∆PQR, sum of angles = 180°
⇒ ∠P + ∠Q + ∠R = 180°
⇒ ∠2 + ∠4 + ∠1 + ∠3 = 180°
⇒ ∠1 + ∠3 + ∠1 + ∠3 = 180°
⇒∠2 (1 + ∠3) = 180°
⇒ ∠1 + ∠3 = (180°)/2 = 90°
∴ ∠R = 90°
In ∆PQR, by Pythagoras theorem,
PR2 + QR2 = PQ2