In a Δ ABC, B = 90° and tanA = 1/√3. Prove that

i. sinA cosC + cosA sinC = 1


ii. cosA cosC - sinA sinC = 0

We have, tanA = k/(k√3) = BC/AB


Δ ABC is a right angled triangle



By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2


AC2 = BC2 + AB2


= AC2 = (k)2 + (k√3)2


= AC2 = k2 + 3k2


= AC2 = 4k2


AC = 2k


sinA = BC/AC = k/(2k) = 1/2


cosA = AB/AC = (k√3)/(2k) = √3/2


sinC = AB/AC = (k√3)/(2k) = √3/2


cosC = = BC/AC = k/(2k) = 1/2


i. sinA cosC + cosA sinC = (1/2)(1/2) + ( √3/2)( √3/2)


=


= 4/4


= 1


RHS = LHS


HENCE PROVED


ii. cosA cosC - sinA sinC = (1/2)(√3/2) - (1/2)(√3/2)


= (√3/4) - (√3/4)


= 0


RHS = LHS


HENCE PROVED


29