Find three numbers in AP whose sum is 15 and product is 80.
Let the numbers be (a - d), a, (a + d).
Now, sum of the numbers = 15
∴ (a - d) + a + (a + d) = 15
⇒ 3a = 15
⇒ a = 5
Now, product of the numbers = 80
⇒ (a - d) × a × (a + d) = 80
⇒ a3 - ad2 = 80
Put the value of a, we get,
125 - 5 d2 = 80
⇒ 5 d2 = 125 - 80 = 45
d2 = 9
d = � 3
∴ If d = 3, then the numbers are 2, 5, 8.
If d = - 3, then the numbers are 8, 5, 2.