If the sum of first p terms of an AP is (ap2 + bp), find its common
Let Sp denotes the sum of first p terms of an AP.
Sum of first p terms = Sp = ap2 + bp
Then pth term is given by: ap = Sp - Sp - 1
∴ ap = (ap2 + bp) - [a(p - 1)2 + b(p - 1)]
= (ap2 + bp) - [a(p2 + 1 - 2p) + bp - b]
= ap2 + bp - ap2 - a + 2ap - bp + b
= b - a + 2ap
Now, common difference = d = ap - ap - 1
= b - a + 2ap - [b - a + 2a(p - 1)]
= b - a + 2ap - b + a - 2ap + 2a
= 2a
∴ common difference = 2a
ALITER: Let Sp denotes the sum of first p terms of an AP.
Sum of first p terms = Sp = ap2 + bp
Put p = 1, we get S1 = a + b
Put p = 2, we get S2 = 4a + 2b
Now S1 = a1
a2 = S2 - S1
∴ a2 = 3a + b
Now, d = a2 - a1
= 3a + b - (a + b)
= 2a
∴ Common difference = 2a