How many terms of the AP 9, 17, 25, ... must be taken so that their sum is 636?
Here, first term = a = 9
Common difference = d = 17 - 9 = 8
Let first n terms of the AP sums to 636.
∴ Sn = 636
To find: n
Now, Sn = (n/2) × [2a + (n - 1)d]
Since, Sn = 636
∴ (n/2) × [2a + (n - 1)d] = 636
⇒ (n/2) × [2(9) + (n - 1)(8)] = 636
⇒ (n/2) × [18 + 8n - 8)] = 636
⇒ (n/2) × [10 + 8n] = 636
⇒ n[5 + 4n] = 636
⇒ 4n2 + 5n - 636 = 0
⇒ 4n2 + 5n - 636 = 0
⇒ (n - 12)(4n + 53) = 0
⇒ n = 12 or n = - 53/4
But n can’t be negative and fraction.
∴ n= 12
∴ 12 terms of the given AP sums to 636.