How many terms of the AP 3, 7, 11, 15, ... will make the sum 406?
Here, first term = a =3
Common difference = d = 7 - 3 = 4
Let first n terms of the AP sums to 406.
∴ Sn = 406
To find: n
Now, Sn = (n/2) × [2a + (n - 1)d]
Since, Sn = 406
∴ (n/2) × [2a + (n - 1)d] = 406
⇒ (n/2) × [2(3) + (n - 1)4] = 406
⇒ (n/2) × [6 + 4n - 4] = 406
⇒ (n/2) × [(2 + 4n] = 406
⇒ n[1 + 2n] = 406
⇒ n + 2n2 = 406
⇒ 2n2 + n - 406 = 0
⇒ 2n2 - 28n + 29n - 406 = 0
⇒ 2(n - 14) + 29(n - 14)= 0
⇒ (2n + 29)(n - 14) = 0
⇒ n = 14 or n = - 29/2
∴ n= 14 (∵ n can’t be a fraction or negative number)