Also find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of (3/2) k T at 300 K.

Here the neutron is in thermal equilibrium with matter and it have a kinetic due which depends upon temperature of surrounding


We have a relation to find kinetic energy of a atomic particle at any Temperature which is



Where EK is the kinetic energy of particle at temperature T and K is Boltzmann constant


K = 1.38 × 10-23 JK-1


Here temperature is


T = 300 K


So linetic energy of neutron is



So kinetic energy of neutron is


Ek = 6.21 × 10-21J


And we know Kinetic energy of a particle is given by the relation



Where vis the speed of the particle and m is the mass of the particle


Multiplying both side sides by m



Or


So we get



We know de-Broglie wavelength of a particle is given by relation



where

17