Do the same exercise as above with the replacement of the earlier transformer by a 40,000-220 V step-down transformer (Neglect, as before, leakage losses though this may not be a good assumption any longer because of the very high voltage transmission involved). Hence, explain why high voltage transmission is preferred?

Given: Rating of step down transformed = 40,000-220 V

Input voltage V1 = 40000 V


Output voltage V2 = 220 V


Total electric power P = 800 KW


In watt, P = 800 × 103 W


Potential V = 220 V


Voltage of power generated by the plant V’ = 440 V


Distance between town and power generating station = 15 km


The resistance of the two wire line carrying power is 0.5Ω per km.


Total resistance of wire = (15(km) + 15(km))0.5 = 15 Ω


Input voltage v1 = 4000 V


Output voltage V2 = 220 V


The root mean square current in the lines can be calculated as follows:


I = P/V1


= (800 × 103W)/40000V = 20 A


Line power loss can be calculated as follows:


P = I2R


= (20A)2 × 15Ω = 6 kW


B. Let the power loss due to current leakage is negligible


Total power supplied by the power plant = 800kW + 6kW = 806 Kw


C. Voltage drop V = IR


Substituting the values, we get


20A × 15Ω = 3000V


Therefore, the total voltage supplied = 300V + 40000V = 40300V


And since the power generated = 440 V


Therefore, the rating should be 440 V- 40300 V


26