If sin A + sin2A = 1 then cos2A + cos4A = ?
Given: sin A + sin2 A = 1
Therefore sin A = 1 – sin2 A = cos2 A ……(1)
Now, consider cos2A + cos4A = cos2 A(1 + cos2A)
Put the value of cos2A in the above equation:
Therefore, cos2A + cos4A = cos2 A(1 + cos2A)
= (1 – sin2 A)(1+1 – sin2 A)
Again, from equation (1), we have 1 – sin2 A = sin A. So, put the value of sin A in the above equation:
Therefore, cos2A + cos4A = (sinA)(1+ sinA)
= sin A + sin2 A
= 1 (given)
Therefore, cos2A + scos4A = 1